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Abstract — An analysis is made of forced-convection film boiling in stagnation flow of subcooled liquids. The
role of liquid viscosity in film boiling is determined by postulating the existence of a hydrodynamic boundary
layer superposed on potential flow and using a perturbation technique. The viscous boundary layer due to
shear stress at the vapor-liquid interface is shown to perturb the velocity field only slightly at large liquid
subcooling. While the inviscid solution cannot be used to describe liquid motion when the liquid temperature
is near its saturation temperature, the vapor is found to move only under the influence of the potential flow
pressure distribution, thereby eliminating the coupling between the liquid boundary layer and vapor film
without any significant errors in the heat-transfer problem. A rational interpolation formula between these
two limiting cases leads to a simple expression for the film boiling heat transier incorporating the major
effects of wall superheat and liquid subcooling. The applicability of this formula to subcooled film boiling
from a sphere or a cylinder is demonstrated.

NOMENCLATURE

stagnation point velocity gradient for the v,V, vapor and liquid velocities in the y-

liquid [3V ./(2R) for a sphere]; direction, respectively;

dimensionless wall superheat parameter V., free-stream velocity;

[equation (17)]; X, arc length measured from the front stag-
stagnation point velocity gradient for the nation point [Fig. 1];

vapor film [equation (9)]; » coordinate normal to the surface [Fig. 1].
dimensionless liquid subcooling parameter

[equation (17)]; Greek symbols

heat capacity; 8, (vp*?)'7 ratio [equation (17)];
integration constant for velocity solution in é, vapor film thickness [Fig. 1];

vapor film; & density ratio [(p/p)**];

integration constant for velocity solution in ", dimensioniess similarity coordinate for va-
liquid; por film [equation (7)];

dimensionless vapor film stream function Mg dimensionless vapor film thickness
[equation (7)]; [6(2a/v)* 2],

dimensionless liquid flow stream function
[equation (6)];

heat-transfer coefficient;

thermal conductivity;

latent heat of liquid evaporation;

Nusselt number [2Rh/k];

pressure in the vapor film;

pressure in liquid;

pressure in liquid far from sphere or
cylinder;

Prandtl number;

radius of sphere or cylinder;

liquid flow Reynolds number [2RV ., /v];
temperature in vapor film;

temperature in liquid; T,, wall tempera-
ture; T, free-stream temperature; T,
boiling temperature of the liquid;

vapor and liquid velocities in the x-
direction, respectively;
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ns0), dimensionless vapor film thickness outside
the stagnation region;

9, dimensionless vapor film temperature
[equation (10)];

H, absolute viscosity ;

v, kinematic viscosity;

£, dimensionless similarity coordinate for the
liquid [equation (6)];

o, density;

o, dimensionless liquid temperature [equa-
tion (10)).

Subscripts
[, liquid properties.

L. INTRODUCTION

THE FIRST theoretical study of upward-flow forced-
convection film boiling from a horizontal cylinder was
that of Bromley, LeRoy and Robbers [1]. They
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examined the saturated liquid case and modified
natural convection film boiling theory [2] to account
for the effects of liquid velocity on the pressure
distribution imposed on the vapor film. In developing
their model, Bromley et al. assumed a constant
evaporation rate per unit area of cylinder surface to
evaluate the viscous drag at the vapor-liquid interface
and that the interfacial velocity can be determined
from potential flow theory. Because the results of their
approximate solution did not correctly predict the
functional behavior of their experimental data, they
proposed an empirical relationship for predicting the
rate of heat transfer. Motte [3] and Motte and
Bromley [4] experimentally investigated forced-
convection film boiling of subcooled liquids outside
single cylinders over a wide range of temperatures and
liquid velocities. These workers concluded that, while
heat is transported across the vapor film by con-
duction, heat is transferred into the subcooled liquid
by eddy motion (turbulence). They applied this idea to
correlate their data; however, their correlation is
dependent on their flow system and lacks generality.

Kobayasi [S] presented an analysis of film boiling
on a sphere in a flowing saturated liquid in a manner
identical to that of Bromley et al. [1] for a cylinder. In
an attempt to simplify Kobayasi’s analysis, Witte [6]
ignored the pressure field established in the vapor film
by the flowing liquid and, therefore, assumed the
velocity profile within the vapor film is linear. Such an
assumption can not be valid since, owing to the low
density of the vapor compared to that of the liquid,
pressure gradients must very significantly influence the
velocity profile in the vapor film. Recently, Dhir and
Purohit {7] performed experiments on heat transfer
during subcooled film boiling of water on spheres.
They cited some values of the heat-transfer coefficient
in the forced convection regime.

Additional experimental work, in which high-
temperature metal spheres were passed rapidly
through water, has been reported by Walford [8] and
Stevens and Witte [9]. These experiments were de-
signed to study the transition from film to nucleate
boiling. Walford [8] measured an average heat flux
which apparently includes contributions from both
film and nucleate boiling, while in the experiments by
Stevens and Witte [9] the liquid was significantly
subcooled so that either stable film boiling did not
occur or quickly gave way to nucleate boiling. Work
with a hot sphere quenched in liquid sodium is
described in [10}. The liquid subcooling in these
experiments was so extreme that it is doubtful that film
boiling took place at all.

An objective of this paper is to present a logical
theoretical treatment of film boiling of flowing liquids
on spheres or cylinders with due consideration of the
effects of liquid subcooling and viscosity. This analysis
approaches the problem from the point of view that the
vapor film thickness is a weak function of the arc
length measured from the front stagnation point. The
nature of the heat transfer from the sphere or cylinder
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may thus be determined from the solution of the
governing equations for stagnation flow. If one has
information regarding the location at which the vapor
film is transformed into a thick vapor wake {separation
point), then one can easily solve for the heat-transfer
coefficient. This information may be obtained from
experimental observation or inferred from consider-
ation of the potential flow pressure gradient.

Strictly speaking, the vapor film thickness is not
constant over the surface of the sphere but grows over
the leading portion of the body and may rapidly
increase by over a factor of two near the equator of the
sphere. Thus, we anticipate that a film boiling model
based on a constant vapor film thickness will over-
estimate the heat-transfer rate. However, as will be
seen, the vapor film thickness variation over most of
the front surface of the sphere is small enough so that
the heat-transfer coefficient is not appreciably in error
by assuming a uniform vapor film. One can readily
develop a model that includes the effects of vapor film
growth with distance from the stagnation point (see
Section 4.2). Unfortunately, while conceptually simple,
such models require numerical calculations and lack
generality. The present treatment, based on the notion
of a uniform vapor film, suggests a universal correlat-
ing expression for forced-convection film boiling heat
transfer that incorporates the effects of both wall
superheat and liquid subcooling.

2. FILM BOILING IN AXIALLY SYMMETRICAL
STAGNATION FLOW

2.1. Physical model
Let us consider a stationary solid sphere of radius R

situated in an upward-flowing, unbounded liquid
which has a uniform, constant velocity ¥, at infinity.
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F1G. 1. Physical model and coordinate system for film boiling
in the forward stagnation region.
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We shall restrict ourselves to the forward stagnation
region of the sphere as illustrated in Fig. 1. The
temperature of the liquid at infinity is T, which is
lower than the liquid saturation temperature T,,,. The
temperature of the sphere is sufficiently high so that the
sphere is separated from the liquid by a continuous
vapor film of uniform thickness 6. We introduce a
curvilinear system of coordinates as shown in Fig. 1.
We denote the arc length measured along any me-
ridian in the 0-direction from the front stagnation
point (located at the bottom of the sphere) by x, and y
is the coordinate normal to the surface of the sphere,
outward as positive.

The model of the vapor film used in the present
analysis is essentially the one presented by Bromley et
al. [1]. Accordingly, in addition to the assumption of a
vapor film of uniform thickness, the following assum-
ptions are made:

(Al) The inertia terms in the vapor film momentum
equation and the convection terms in the vapor
film energy equation can be neglected.

(A2) The vapor film is very thin compared with the
radius of the sphere.

(A3) The vapor flow is laminar around the sphere and
the vapor-liquid interface is smooth.

(A4) The surface temperature of the sphere, T,, is
taken to be uniform.

(AS) All physical properties of the liquid and its vapor
are assumed to be constant and may be eva-
luated at the arithmetic average temperature (T,
+ T,,,)/2for the vapor and (T,,, + T.)/2for the
liquid.

To extend the model of [1] to include liquid subcool-

ing, it is necessary to consider energy convection

within the liquid. To accomplish this, we make the
following additional assumptions:

{A6) Theregion in which the temperature of the liquid
varies appreciably is a thin one adjacent to the
vapor-liquid interface ; in other words, the ther-
mal boundary layer in the liquid is small com-
pared to the radius of the sphere.

(A7) The liquid velocity is high enough for the
gravitational force (buoyancy) to be negligible.

(A8) Radiation heat transfer is neglected.

A discussion of the expected accuracy of these approxi-

mations is postponed to Section 4.2.

2.2. Basic conservation equations

The underlying conservation equations incorporat-
ing the foregoing assumptions are those for laminar,

* The present analysis can be applied to predict film boiling
heat transfer from a hot surface in the impingement region of
a liquid jet by simply setting a, >~ V /d where d is the jet
diameter. In the Jominy end-quench test for the determi-
nation of the hardenability of steel, a round steel bar is heated
above 910°C and is then end-quenched with a water jet (see,
for example, [11]). Early in the quenching period, the jet is in
film boiling.

axisymmetric stagnation flow. Across the vapor-
liquid interface at y = 4, velocity, shear and mass flow
continuity requirements provide the relations

Ou

U
r3, = g pv=pV. (1)
y

=U
u Lr

In addition, temperature and energy continuity is also
required at this interface

é

Capital letters are used to identify the liquid velocity
and temperature variables, while those in the vapor
film are assigned lower case letters. Unsubscripted
physical properties pertain to the vapor film, while
those in the liquid region bear the subscript I. The
boundary conditions imposed at the hot surface of the
sphere and in the liquid flow at infinity are

oT
t=T="T,, k9£=va+k,——-. (2)
y dy

y=0, u=v=0, t=T,; (3)

y=oc, U—ax, VoV =-2ay T->T.;(4)
1 4

PP, + Ea,zp,(gR’ - xz). )

Equations (4) and (5) simply express the fact that the
liquid flow field and pressure distribution away from
the thin viscous boundary layer is taken to be that for
potential flow. The constant g, used above is the
stagnation point velocity gradient. For flow in the
front stagnation point region of a sphere q, =
V. /2R)*

Now, as usual in boundary layer theory, the quan-
tities in the above equations are non-dimensionalized.
In particular, for the liquid region momentum field, we
define the variables

dF ()
da¢ ’
V= —(Qaw)'?F¢). (6)
Similarly, for the vapor film there is introduced
df(n)’

U=aqx—

dn

v=—Qav)'3f(n), (7)

where the pressure distribution in the vapor film is
given by

(= (201/"1)”2)', U=ax

n = (2a/v)'?y,

- 1, 4 2 _ 2
p—PQ+2a p<9R x). 8)
Since the pressure distribution in the vapor film is
precisely the same as that in potential flow - a
consequence of the nature of boundary layers, the
stagnation point velocity gradient ‘a’ for the vapor film
is related to a, according to

a=(p/p)*a ®

[compare equation (S) with equation (8)).
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Finally, the temperature profiles are conveniently
described in terms of the following dimensionless
choice:

T() ~ Ta

_tm-T,
Tx b Tut ’

Tut - Tw )

The liquid momentum and energy conservation
equations now reduce to the well known forms

¢ = 9 (10)

1
F'"+FF"+5(I~—-F'2)=0, (11)

¢" + PrF¢’ =0, (12)

where the primes denote differentiation with respect to
the independent variable {. For the vapor film there
results

1
S+ I+ 5= =0, (13)
& + Prf¢ =0 (14)
with the primes representing differentiation with re-

spect to 7.
With this choice of notation, the matching con-
ditions at the vapor-liquid interface transform to

F(Q) = efftna),  FO) =Sf"(n)/e

F*(0) = Bf"(ns), (15)

$(0) =0, 6(n,) =10,
AB'(n5) = fn;) + B/(Pr)'*¢'(0), (16)

where ¢, B, A and B are dimensionless parameters
defined as

12 12,12 -
e
P o v PrL

ki (T~ Tx)

=8 Pr)t2,
B=ps —pr

(1

Note that in equations (15) and (16) the value of  at
the vapor-liquid interface is denoted by 7, =
8(2a/v)'’?. For convenience, we take ¢ = 0 at the
vapor-liquid interface. This is permissible because ¢
does not enter into the matching conditions. The
parameter A in definition (17) is the familiar dimen-
sionless wall superheat, while B is a parameter related
to the degree of liquid subcooling.

Applying the transformations (6}, (7) and (10) to the
boundary conditions (3) and (4) yields

n=0: fO=,0)=0, 60)=0, (18)
E=o: FE-10, ¢(H)—~10. (19

The ordinary differential equations (11)~(14), tog-
ether with the matching and boundary conditions (15),
{16), (18) and (19) suffice to determine the four
unknowns. The problem is seen to involve consider-

* This solution is obtained by using the transformation
W(E) = ES(£), which results in the separable equation S” +
@1+ o5 =0
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able mathematical complexity and a large number of
independent physical parameters. However, a signi-
ficant simplification in the problem can be obtained by
the approach to be followed here.

2.3. Solution method and results for velocity field
According to assumption (A1), we can set aside the

effects of inertia and energy convection in the vapor

film. With this, equations (13) and (14) simplify to

1
=== 6=0 (20)

2
Solutions of these equations satisfying the boundary

conditions (18} and the second of (16) are

et dee gl

f— 12’1 +2C']1 0"]4,

where the integration constant C and the film thick-

ness n, remain to be determined from’the interface

matching conditions and the liquid veiocity and
temperature fields.

Compare the flow of liquid in film boiling over a hot
sphere with that of a sphere in thermal equilibrium
with the surrounding liquid. For the latter case, the
boundary layer is perceived as a thin layer at the sphere
surface where viscous forces play a dominant role;
outside this layer, the flow departs little from the
inviscid flow pattern. For the hot sphere covered with a
vapor film, the liquid does not come to rest anywhere
within the flow field. At first sight it might appear that
potentiai flow could be a valid solution for the entire
liquid flow field [1, 5, 6]. This is not always the case,
however, as we shall point out below. Moreover, the
velocity derivatives for potential flow would not satisfy
the tangential stress boundary condition at the
vapor-liquid interface. Assuming the liquid flow is
only slightly perturbed from potential, a first approxi-
mation for the velocity in the liquid boundary layer is

FiQ) =4+ W(Q). (22)

The perturbation function W(¢{) is assumed to be small
such that | W(£)] « £. Substituting this expression into
equation (11) and deleting terms of order W2 gives the
following linearized momentum equation:

W+ (W' — W =0 23)
subject to the matching conditions [see equation (15)]
W(0) = eBf(n,), 1.0+ W'(0) = f'(n,)/e,
W) = Bf"(ns) (24)
and the boundary condition {see equation (19}]
W(x)—0.

@1

(25)

The solution of equation {23) which satisfies condition
(25) at infinity is*

W= C,[e‘*""’2 - \/gferfc (6/2"’2)], (26)

where C, is an integration constant. Inasmuch as the
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present analysis is developed under the assumption
that the perturbed liquid velocity is small as compared
to the velocity given by the inviscid solution, equation
(26) will not be valid unless C, is a small quantity.
Utilizing the second and third matching conditions
(24) and equations (21) and (26) then gives the
following algebraic relations between the constants of
integration and the vapor film thickness, #,:

1 £
-ni +

oot J2n

Ns+ &

=5 27
ns + \/:Sﬁ
n
1
. Zﬂg - &
C = (28)

.t z 1
s ZB""

The tangential component of the liquid velocity F'(¢)
can readily be evaluated from equations (22) and (26)
1
“n—e

F@¢) =10+

x [e'-f’/z - \/géerfc (C/ﬁ)]~ (29)

Examination of this result reveals that F'(¢) be-
comes identical to the potential flow solution when 5,
= 2¢'72, For thicker vapor films, 5, > 2¢'72, due to the
free stream pressure distribution impressed on the
vapor film, the vapor velocity exhibits a maximum
within the film and exceeds the liquid velocity within
some of the film. Frictional shear is transported from
the vapor flow to the liquid flow. In this case the liquid
velocity is higher than that given by the potential
solution. Conversely, when the vapor film is thin (i.e. 5,
< 2¢'72), then the tangential velocity in the liquid falis
below that given by potential flow theory, indicating
that frictional shear is transmitted from liquid to
vapor. The liquid velocity is now larger than that in the
vapor film; the form of the vapor velocity distribution
is monotonic, decreasing from some finite value at the
vapor-liquid interface to zero at the hot surface. In
actual practice, the vapor film thickness never becomes
much smaller than 2¢!/2. Thus, hereafter the term ‘thin
film’ (or the thin-vapor-film limit) will refer to the
rough equality n, ~ 2¢'/2,

The range of film thicknesses for which only small
departures from the inviscid solution are to be expec-
ted can be calculated from the present results, with the
help of some representative values of the parameters
and . The parameter B [see equation (17)] is generally
a number of order unity. For instance, for water,

* Equation (32) is applicable to liquid metals by setting
Cins) = 0in the third term in equation (32).
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ethanol, and sodium at one atmosphere, the values of 8
are0.8, 1.5, and 2.6 respectively. On the other hand, the
values of ¢ at one atmosphere are quite small and are in
the range 0.01 < ¢ < 0.05. If we require the perturbed
velocity component to fall within, say, 20%, of the
potential flow value, equation (29) suggests that the
vapor film thickness should be confined to the range
0.12 = n,; = 0.8. Using the results of the next section,
we find that in a highly subcooled liquid the vapor film
thickness falls within this range. However, as subcool-
ing is decreased and saturated conditions are ap-
proached, n; is predicted to exceed 0.8 by more than a
factor of 3.0 resulting in appreciable departures from
inviscid motion in the liquid. Fortunately, for liquid
temperatures near saturation, we can neglect the
existence of the viscous liquid boundary layer without
causing any significant error in the heat-transfer
problem. This will be demonstrated below.

2.4. Vapor film thickness

For high Prandtl number liquids, the thermal
boundary layer will be restricted to a very thin region
near the vapor-liquid interface, and we may, therefore,
employ an expression for F({) which is applicable for
small {. Expanding F({) in a Taylor series, it is found
that

F@) = FO) + ¢F©) + 38 FO) + ... = el

1/n 1/2
+¢{[1+ Cina)] - 5(5> ECn) +..., (30)
where use has been made of the first of matching
conditions (15). Since both C, and ¢ are small com-
pared with unity, it is clear that we need only retain the
first two terms in this series. Substituting this into
equation (12) and integrating yields

[@/m)Pr(1 + C)]'"?
e erfc (b'7?) ’

where b = (1/2)[¢Bf(ns)}*Pr/(1 + C)). The values of b
with which we have to deal are much less than unity.
For example, for water in film boiling at one atmos-
phere b ~ 0.01. Physically, this merely implies that the
evaporation process has little effect on the liquid flow
field and F(0) can be taken to be zero.

Substituting equation (31), where b = 0 and equa-
tion (21) into the last of the matching conditions (16)
gives the following implicit relationship for the vapor
film thickness:

1 1 /=n 1/2
—nt—ﬁ<§) n3Ci(ns)
2\172 172
+ B(;) [1 + Cl(’la)] ns=A, (32)

6
where the C/(n;) relation is given by equation (28).* We
are now in a position to derive an interpolation
formula for the vapor film thickness which is valid for
any liquid. Values of A in therange 0.1 < 4 < 5.0 and

¢'(0) = (31)
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of Bfor 0 < B < 3.0 have been obtained in the
laboratory [1,3,4,7]. Predicted values of #; over this
range are found to be remarkably insensitive to zand .
As an example, we may note thatifc = 0.03and A = B
= 1.0 an increase in the magnitude of § from 0.1 t0 10.0
results in a variation of less than 10% in the value of 5,.
This is to be compared with an increase in the
interfacial velocity from F'(0) = 1.0for 8 = 0.1 to F'(0)
= 2.0 when § = 10.0 [see equation (29)]. Thus it
appears that the film thickness perturbation is small
even when the liquid velocity perturbation is not small
which allows us to extend equation (32) into a
parameter domain well beyond that for liquid motion.
This behavior is readily explained by examination of
equations {28) and (32). In the case of highly subcooled
liquids, when B » A both n, and C/(n,) are small
quantities. The third term in equation (32) dominates
the first two terms and the film thickness takes the
limiting form

P X[ZA
REx

which is independent of ¢ and B. In this limiting case,
the liquid subcooling is so large that practically all of
the energy transferred from the sphere heats the
flowing liquid. The contribution of liquid evaporation
to the energy balance at # = 7, is negligible, and the
vapor film thickness is dictated by the heat conducted
through it. The reason for the validity of expression
(33) for common liquids with large amounts of sub-
cooling, is that the vapor film becomes sufficiently thin
so that the liquid shear is small (i.e. n; ~ 2¢!?)and the
liquid heat transfer can be determined from potential
flow theory. For nearly saturated liquids, A » B, n,is
of order unity and C(n,) approaches the quantity C;, =
Bns/(8m)'/? [see equation (28)]. Substituting this value
into equation (32) and neglecting the third term which
is now small compared with the others, yields

ns— (2440 A> B,

for B» A, (33)

for (34)
an equation which is also independent of £ and 8. This
shows that under saturated boiling conditions the
vapor flow is mainly governed by the potential flow
pressure distribution outside the viscous layer, the
effect of liquid motion being imperceptible. The vapor
velocity within most of the film is so much larger than
the liquid velocity that, as far as the vapor motion is
concerned, the phase change boundary at n = 7, acts
as a solid wall. Recall that for thick vapor films the
vapor velocity rises to 2 maximum within the film (at #
~ n4/2 when 5, » 2:'73),

By considering the structure of equations (33} and
(34), it is not difficult to see that the following relation
transforms into (33) and (34) when 4 » Band 4 « B:

1 2 2 B 4"~ 1 /4

e BT

Since 1, increases linearly with A4 at high subcoolings
and as the one-fourth power of 4 at low subcoolings,

35)
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the accuracy of this interpolation formula is relatively
high. An implicit, but more accurate relationship
between the vapor film thickness and the parameters
A, B is obtainable from equation (32) by simui-
taneously setting C, = fn,/(8%)'/? in the second term
and C, = 0in the third term, namely

1

2 172
—nd (?E) By, = A. (36)

24
This relation could be obtained directly by assuming
that the flow of vapor moves under the influence of the
potential flow pressure field only and is contained
between two stationary parallel planes (ie. the
liquid—vapor interface and the surface of the sphere),
with the liquid heat transfer based on inviscid flow. In
the region where both liquid subcooling and wall
superheat are important, the vapor film thickness
given by equation (35) is only about 159 different than
that from the more accurate result (36).

Of course, equation (35) is only expected to be valid
for physical parameters 4 and B leading to a stable
vapor layer covering the hot surface. As an example,
Dhir and Purohit [7] observed that the minimum
surface temperature to sustain film boiling of water on
a hot sphere does not depend on liquid velocity and
canbecorrelatedin Kby T, — T,,, = 101 + 8(T,,, —
T,.). In terms of our dimensionless parameters, this
result leads us to expect stable film boiling for water
when 4 ¥ 0.08 + 0.3B.

2.5. Heat transfer

Calculations based on the theoretical pressure dis-
tribution derived from potential flow theory indicate
an adverse pressure gradient on the downstream side
of bodies such as spheres and cylinders (i.e. for 8 >
n/2). Thus, the vapor film cannot penetrate too far past
the equatorial plane of the sphere without becoming
very thick. At sufficiently high liquid flow velocities,
visual observation indicates that this ‘vapor film
separation’ occurs between positions 8 = 7n/2 and 3n/2
radians from the forward stagnation point, depending
on the degree of liquid subcooling [12}. The down-
stream side of the sphere is observed to be covered
by a thick vapor wake. A similar observation is
reported in [1] for film boiling from a horizontal
cylinder with the liquid flow directed upward. Tem-
perature measurements within the interior of the
cylinder demonstrated that the largest percentage of
heat is transferred on the lower half of the cylinder.

If the heat transfer above the angle 8 = =n/2 is
neglected, the heat-transfer coefficient, k, based on the
total surface area of the sphere becomes

k 3 142 kReli2
h L T [ - . y
25 (2) 2Rfn,

37

where Re = 2RV /v, is the liquid flow Reynolds
number. Equation (37) is based on a uniform vapor
film thickness over the lower surface of the sphere
equal in value to that in the forward stagnation region.
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The justification of doing this is presented below and in
Section 4.2. The Nusselt number, Nu = 2Rh/k, may be
expressed as

ﬂNu _ 3)1/21 _(3)1/2 1 (z)l(B)l]l/A
W‘(E o) mat\)\a) ]
(38)

As mentioned previously, solutions for film boiling
of saturated liquids on spheres were provided by
Kobayasi [5] and Witte [6]. Kobayasi’s expression for
high liquid velocity, when cast in the notation of
Section (2.2), is given by

BNu 0454
(Re)uz = A4 :
The present method (of equation (38) when B = 0)
yields the equation
BNu  0.553
®ey? = A
This relation has qualitative behavior which is identi-
cal to equation (39). The small difference in the
numerical constants of 229, is due undoubtedly to our
assumption of a uniform vapor film thickness. Witte’s
result, which ignores the impressed pressure distri-
bution, takes the form
BNu  0.702¢'2
(Re)' = T4

(39

(40)

(41)

and yields values for Nu lower than equations (39) or
(40) by about a factor of 4.0 for A ~ 1.0. This result
would not be expected to apply to most film boiling
situations of practical interest.

3. FILM BOILING IN TWO-DIMENSIONAL
STAGNATION FLOW

The analysis of film boiling in the stagnation region
of a cylinder is similar to that for a sphere, the only
basic difference being plane flow as opposed to
axisymmetrical flow. Omitting the derivation, the
approximate equation for the Nusselt number for
forced convection film boiling from a cylinder in-

corporating the assumptions of Section 2.1 is

ﬁNu 3 1/2 1 4 2 B 471/4
(Re)'” (2) [27A " <3n> (A) ] @
The ratio of the Nusselt number for a sphere to that for
a cylinder is between 1.03 and 1.22 depending on the
amount of liquid subcooling. Considering the random
scatter of the experimental data and the simplifying
assumptions in the analysis, this small difference
between the two geometries can be ignored.

4. DISCUSSION
4.1. Comparison with experiment

In Fig. 2, the present results are compared with
available experimental data for forced-convection film
boiling from cylinders and spheres [ 1, 2, 3,4, 7]. Motte
[3] and Motte and Bromley [4] studied film boiling
with ethyl alcohol, hexane, carbon tetrachloride, and
benzene from cylinders of 0.983, 1.26, and 1.62cm
diameter. The data represent subcoolings from
11.0-45°C and liquid flow velocities in the range 0.9 to
4.0m s~ . Data for film boiling of ethyl alcohol [1] at
saturation temperature in the forced convection re-
gime are also included in Fig. 2. Dhir and Purohit’s [7]
data were obtained for film boiling from a 1.9cm
diameter sphere in the boiling region very close to the
minimum heat flux. The amount of water subcooling
was varied from 0-50°C and the water flow velocity
was increased from 0.02-0.45m s~'. To avoid the
effects of gravity, Fig. 2 includes only the highest flow
velocity reported in [7].

It is clear from Fig. 2 that the observed heat transfer
rates are higher than the calculated values in every
case. This is not unexpected since the model does not
account for wave motion at the liquid-vapor interface,
liquid—solid contact nor heat transfer above 6 = n/2.
Nevertheless, the order of magnitude and the general
trend of the data agree well with the theory. Com-
parison of the solution (38) with the experimental
results presented in Fig. 2, shows that a numerical
correction factor of about 2.0 should be introduced to
best correlate the data (dashed curve in Fig. 2). It
should be mentioned that a numerical correction
factor of this magnitude has been introduced to
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account for the intensifying effect of waves on heat
transfer in film condensation of flowing vapor on a
cold surface {13]. Note that the inverse of the vapor
film thickness to the fourth power is used as the
abscissa in Fig. 2 [see equation (35)]. Most of the
measurements have been made in the thick vapor film
boiling regime corresponding to low values of the
abscissa. In this region, the vapor superheat parameter
A dominates and liquid subcooling effects are neglig-
ible. The scatter in the data seems to suggest that the
correlation improves with increased liquid subcooling,
although this may very well be due to the paucity of
data at high liquid subcooling. It would be desirable to
obtain additional data in this region.

4.2. Validity of the model
First we focus attention on the applicability of

equation (38) to film boiling on a sphere or cylinder.

This information is provided by a more general
analysis which allows for a variable vapor film thick-
ness. An expression for the vapor film thickness as a
function of the angle § measured relative to the
upstream axis of symmetry (see Fig. 1) can be obtained
from a mass balance for a small differential element of
vapor. Invoking the assumptions of Section 2.1, we
find that n,(6) satisfies the ordinary differential equa-
tion

1 1/2 ’
dny0) 4- 2%(““2 6 - >sin? 0)»1:(6) - (%) _B.(1+cos8)(2 +cos )12 . 5,(6)
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is given by equation (36) which is recovered by setting
dn;s(0)/d0 = 8 = 0in equation (43). Equation (43) was
solved numerically using a computer library program.
Typical results for saturated and subcooled film
boiling, showing the effects of wall superheat on the
growth of the vapor film in the @-direction, are
displayed in Fig. 3. Note that the film thickness is
normalized with respect to the minimum film thickness
at the front stagnation point, 74 It can be seen that the
normalized vapor film thickness is quite insensitive to
A and B for sphere surface positions less than 1.0 rad.
Note also that n,(8) ~ n;over most of the lower surface
of the sphere. When the liquid subcooling effect is
important (when B > A), the numerical integration
could be carried out almost all the way to 6 = n/2
without a significant increase in the vapor film thick-
ness (vapor film separation). This is illustrated in Fig. 3
for thecases 4 = 0.2, A = 1.0 when B = 2.0. Neglect of
the variation of vapor film thickness with surface
position results in overestimating the heat transfer by
some 35%, in the case of saturated liquids, but this error
becomes less than 209, in the limit of large liquid
subcooling.

The large predicted increase in the film thickness
near the equator of the sphere is due to the lessening
and reversal of the pressure gradient as 8 approaches

dé

where, in accordance with what has been said earlier
for stagnation flow, the vapor-liquid interface is
assumed to be stationary as far as the vapor flow is
concerned, and the vapor flow and heat transfer in the
liquid are assumed controlled by the potential flow
pressure distribution and velocity field, respectively.
The initial condition for equation (43) comes from the
observation that the vapor film curvature vanishes at
the stagnation point § = 0. Thus, the initial value n,(9)
= n,at @ = 0 required for the solution of the problem

% (sin 6 cos 8)n3(0)

(43)

and exceeds =/2. This is in qualitative agreement with
available photographic sequences for film boiling of
saturated liquids from spheres falling through water
{12], which indicate that the vapor film thickness in
the region @ >~ n/2 may be several times the vapor film
thickness covering the front of the sphere. Near the
equator of the sphere, within the angular ring [(7/2) —
6], the drag of the liquid on the vapor film over-
shadows the pressure gradient ‘force’ and the film
motion is not unlike forced-convection film boiling of

3.0
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Fi1G. 3. Variation of local film thickness over the lower surface of a sphere according to equation (43).
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a saturated liquid on a flat plate [14]. The liquid drag
is not included in equation (43) which is based on a
stationary vapor-liquid interface. It may be shown,
however, that the angle [{(n/2) — §] in which liquid
drag dominates is of the order 4en; * and for nearly
saturated liquids is insignificant. As mentioned earlier,
vapor film behavior under large liquid subcooling is
controlled by the heat conducted through the vapor
film to the vapor-liguid interface. In this limit the
vapor film thickness is obtained by setting the con-
duction heat flux within the film equal to the solution
for heat (or mass) transfer from a sphere in potential
flow, as presented by Levich [15] or Sideman [16] and
used in expression (43). It has been pointed out in [ 10]
that for highly subcooled liquids almost all the heat
arriving at the vapor-liquid interface is convected
away in the liguid.

Some care must be exercised in neglecting the effects
of vapor film inertia and convection [see Section 2.1,
(A1)] as these effects become significant for thick vapor
films. Inertia and convection effects are estimated by
numerically integrating equations (13) and (14) for the
special case of saturated film boiling, B = 0. Once
again, in this limit the force governing the vapor
motion is mainly due to the potential flow pressure
distribution so that f"(s;) may be taken as zero and the
liquid flow field may be ignored. The remaining
appropriate boundary conditions are f(0) = f'(0) =
8(0) = 0 and 8(n;) = 1.0, AF'(n;} = f{ns). We find that
the effects of vapor film inertia and convection on heat-
transfer rate is characterized by the correction factor (1
+ 0.94)'" for the Nusselt number, if the value of Pr =
1.0*. This correction factor is a ‘fit’ to the numerical
results. Since the presence of liquid subcooling only
reduces the vapor film thickness, this correction will
overestimate the error when B is different from zero.
Interestingly enough, for sufficiently large values of 4,
say A = 3.0, neglecting vapor film inertia and con-
vection underestimates Nu by up to 38%, which almost
exactly compensates for the error introduced by
assuming a uniform vapor film thickness.

From equation (37) we expect the vapor film to be
very thin compared with the radius of the sphere if

J 2\'? Pn,
—R— - (g) W « 1.0,

This condition is always satisfied in forced-convection
film boiling. The left-hand side of inequality (44) falls in
the range 1073-10~2, For laminar vapor flow assump-
tion (A3) implies that the vapor film Reynolds number
udfv = niRe'*/(48B) be less than ~400. The vapor
film Reynolds number is usually of the order of
1.0-150. Except for film boiling of highly subcooled
liquids, film Reynolds numbers > 30 are predicted so
that wave motion may be superposed on the forward
motion of the vapor film. The effective thickness of the
thermal boundary layer in the liquid is R(RePr,)~* .

(44)

* This correction factor is littie different than that sugges-
ted by Bromley, Leroy and Robbers [1]; viz, (1 + 0.44)*"2.

Substitution of the typical values R ~ 10cm, Pr; =~
50, and Re ~ 2 x 10* yields 0.003cm for the
thickness of the thermal layer, a value which is quite
small compared to the radius of the sphere [assump-
tion (A6)). The condition for the neglect of gravity
effectsis ¥, > (2gR)!" (for example see [1]), or Re >
(8gR3/v?)* 2. Putting R ~ 1.0cm and v, ~ 0.01 cm?
s~ 1 gives Re = 9 x 103 for the lower bound to the
liquid Reynolds number consistent with negligible
buoyancy force. All the experimental results presented
in Fig. 2 satisfy this criterion. Finally, we come to the
assumption of negligible thermal radiation heat trans-
fer [see (A8)]. The maximum Nusselt number for
radiative transport is Nu = 2RoT3/k, where ¢ is the
Stefan—Boltzman constant. The contribution of ra-
diative heat transfer to the total Nusselt number is
found to be less than 10 percent for the conditions
reported in [1-4,7].

In the present paper, the viscous motion generated
within a subcooled liquid undergoing forced-
convection film boiling in the stagnation region of a
sphere (or a cylinder) has been studied. This boiling
process may be characterized as follows:

1. For large amounts of subcooling in the liquid, the
viscous shear in the liquid becomes vanishingly
small. In this thin vapor film limit, heat transfer to
the liquid can be evaluated by assuming the
existence of a thermal boundary layer superposed
on potential flow. The vapor film thickness is
strictly controlled by the energy conducted through
it to the flowing liquid.

2. For film boiling in nearly saturated liquids, viscous
shear effects influence the liquid motion, but exert
little influence on the heat transfer. Because of the
low density of the vapor compared to that of the
liquid, it is the potential flow pressure distribution
that drives the vapor motion and not the interfacial
shear forces. In addition, almost all the energy
transferred from the sphere surface is used to
produce vapor and very little energy is transmitted
to the viscous liquid.

3. The heat transfer relation (38) derived for the
stagnation region is approximately applicabie over
most of the surface of the sphere not covered by the
thick vapor wake. It is found that expression (38),
when modified by a numerical correction factor of
about 2.0, namely

i 4715 /4
BNu__ 2.5[—1-— 4 (3) <§) 1° s
(Re)’ 244 \n/ \A4) |
provides a reasonable correlation of observed heat-
transfer rates for subcooled forced-convection film
boiling from spheres or cylinders.
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EBULLITION EN FILM D'UN LIQUIDE SOUS-REFROIDI
ET EN CONVECTION FORCEE, AU POINT D'ARRET AMONT D'UNE
SPHERE OU D'UN CYLINDRE

Résumé — On analyse 'ébullition en film au point d’arrét dans les liquides sous-refroidis. Le rdle de la
viscosité du liquide dans Pébullition en film est déterminé en admettant Pexistence d’une couche limite
hydrodynamique superposée 4 I'écoulement potentiel et en utilisant une technique de perturbation. La
couche visqueuse due i la contrainte tangentielle 4 I'interface vapeur-liquide perturbe le champ des vitesses
légérement, seulement aux forts sous-refroidissements du liquide. Alors que la solution 4 viscosité nulle ne
peut étre utilisée pour décrire le mouvement du liquide quand ia température du liquide est proche de sa
température de saturation, la vapeur se meut seulement sous linfluence du champ de pression de
Pécoulement potentiel, éliminant le couplage entre la couche limite du liquide et le film de vapeur sans erreur
appréciable dans le probléme du transfert thermique. Une formule d'interpolation rationnelle entre ces deux
cas limite conduit 4 une expression simple pour le transfert thermique accompagnant Pébullition, en tenant
compte des effets principaux de la surchauffe de la paroi et du sous-refroidissement du liquide. On démontre
I'applicabilité de cette formule a 'ébullition en film & partir d'une sphére ou d'un cylindre.

UNTERKUHLTES FILMSIEDEN BEI ERZWUNGENER KONVEKTION IM
VORDEREN STAUGEBIET EINER KUGEL ODER EINES ZYLINDERS

Zusammenfassung — Filmsieden bei erzwungener Konvektion in der Staustrémung unterkiihiter Fliissigkei-
ten wird untersucht. Mittels eines Stdrungsansatzes wird unter Voraussetzung der Existenz einer der
Potentialstromung iiberlagerten hydrodynamischen Grenzschicht der EinfluB der Fliissigkeitsviskositit auf
das Filmsieden bestimmt, Es wird gezeigt, daB die durch die Schubspannung an der Dampf-Flissigkeits-
Grenzfliiche bedingte Reibungs-Grenzschicht bei groBer Fliissigkeits-Unterkithlung das Geschwindigkeits-
feld nur geringfiigig stort. Wiihrend zur Beschreibung der Fliissigkeitsbewegung die reibungsfreie Losung
nicht verwendet werden kann, wenn die Fliissigkeit anndhernd Sdttigungstemperatur hat, ist die
Dampfbewegung nur von der Potentialstrémungs-Druckverteilung abhingig. Dadurch ergibt sich ohne
wesentliche Fehler beziiglich der Wiirmeiibertragung eine Entkopplung zwischen der Fliissigkeitsgrenz-
schicht und dem Dampffilm. Eine zweckmiiBige Interpolationsformel zwischen diesen beiden Grenzfillen
fiihrt auf einen einfachen Ausdruck fiir den Wiirmeiibergang beim Filmsieden in Abhéingigkeit von den
HaupteinfluBgroBen der Wandiiberhitzung und der Fliissigkeitsunterkiihlung. Die Anwendbarkeit dieser
Bezichung auf unterkiihltes Filmsieden an einer Kugel oder einem Zylinder wird gezeigt.
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MJIEHOYHOE KUMEHUE C HEJOTPEBOM B NEPEAHENA KPUTHYECKOW 30HE
AN IWUAPA MY LUMIUHJAPA TIPU BbhIHYXXJIEHHOW KOHBEKLIUH

Annotauus — [1poBeleH aHaNH3 NIEHOYHOTO KHIICHHS HEQOIPETOH XUAKOCTH B KpHTHYECKOI 30HE NpH
BbIHYXICHHOH KOHBEKUMH. BnusHHMe BA3KOCTHM XHIKOCTH Ha TNEHOYHOE KMIICHHME OMNpEAEnseTcs C
NOMOLILIO NMPEANONOKEHHS O HaJIMUHH FHIPOJIHHAMHYECKOTO NMOrPaHHYHOrO COS, HANOXEHHOTO Ha
NOTEHUHANBLHOE TCYCHHE, H HCNOJb3OBAHHA McTOAAa BO3MYILeHHH. [lokasaHo, YTO B CHNYy HaJHYHA
CIABMIOBOTO HanpskeHHs Ha NMOBEPXHOCTH pa3lefia Map-)KHAKOCTb MOTPaHHYHBIR CJIOH TOJIbLKO HE3Ha-
YHTENILHO BO3MYLUAET 1OJIE CKOPOCTH NpH OOJBIIMX 3HaYCHMAX HeAOrpeBa XMIAKOCTH. XoTd And
ONHCAHUA TEYECHMA XHAKOCTH B Cllyyae, Koraa e TemnepaTypa NpaOaHkKaeTcs k TEMNEpaType Hachi-
LICHHS, HeJIb3A KCHOJIb30BaTh PElLICHHE IR HEBA3KOTO Clyyas, HalaeHO, YTO map ABHXKETCH TOJbKO
NnoJ BJAHSHHEM PpacnpelclieHHs NaBJeHHS B NMOTEHUHAJILHOM MOTOKE, MTO No3BoaseT, 6e3 BHeCeHHA
CYLHCCTBCHHBIX MOrPELIHOCTEH B 3aayy O TENJONEPEHOCE, pacCMaTpHBaTh OTIC/SbHO MOrpaHHYHbIA
CJI0# XKUIKOCTH H napoByro niénxy. Mcnonb3oBanue panuoHanbHoll HHTEPROIALUHOHHON GOPMYJILI LIS
ONHCAHHS 3THX ABYX NpEAeNbHBIX Clyyae MO3BOJACT NONYYHTL NMPOCTOE BbIPaXEHHE NI TerJo-
nepeHoca NpH MIEHOYHOM KHIICHHH, KOTOPOC YHHTHIBAET TakMe OCHOBHbie 3(GeKThl, kKak neperpes
CTEHKH H HeAOTpeB XHAKOCTH. IlokalaHa NPHMEHMMOCTL (POPMYJNbI K CHYYalo NMJIEHOYHOTO KHICHHS
C HEOTPEBOM Ha lllape HITH LIHNMRIPE.

189



