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Abstract - An analysis is made of force&convection film boiling in stagnation flow of subcooled liquids. The 
role of liquid viscosity in film boiling is determined by postulating the existence of a hydrodynamic boundary 
layer superposed on potential flow and using a perturbation technique. The viscous boundary layer due to 
shear stress at the vapor-liquid interfaa is shown to perturb the velocity field only slightly at large liquid 
subcooling. While the inviscid solution cannot be used to describe liquid motion when the liquid temperature 
is near its saturation temperature, the vapor is found to move only under the influence of the potential flow 
pressure distribution, thereby eliminating the coupling between the liquid boundary layer and vapor film 
without any significant errors in the heat-transfer problem. A rational interpolation formula between these 
two limiting cases leads to a simple expression for the film boiling heat transfer incorporating the major 
e&c& of wali superheat and liquid s&cooling. The applicability of this formula to subcooled film boiling 

from a sphere or a cylinder is demonstrated. 
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stagnation point velocity gradient for the t., V, vapor and liquid velocities in the y- 
liquid [3V,/(2R) for a sphere]; direction, respectively; 
dimensionless wall superheat parameter I/, , free-stream velocity; 
[equation (17)] ; x, arc length measured from the front stag- 
stagnation point velocity gradient for the nation point [Fig. l] ; 
vapor film [equation (9)] ; Y, coordinate normal to the surface [Fig. 1-J. 
dimensionless liquid subcooling parameter 
Equation (17)] ; Greek symbols 

heat capacity;- 
integration constant for velocity solution in 
vapor film ; 
integration constant for velocity solution in 
liquid ; 
dimensionless vapor film stream function 
[equation (7)] ; 
dimensionless liquid flow stream function 
[equation (a)] ; 
heat-transfer coefficient; 
thermal conductivity; 
latent heat of liquid evaporation ; 
Nusselt number [ZRh/k] ; 
pressure in the vapor film; 
pressure in liquid; 
pressure in liquid far from sphere or 
cylinder ; 
Prandtl number; 
radius of sphere or cylinder; 

(~p”~)“~ ratio [equation (1711; 
vapor film thickness [Fig. l] ; 
density ratio [(p/p,)l’z] ; 
dimensionless similarity coordinate for va- 
por film [equation (7)] ; 
dimensionless vapor film thickness 
[S(2a/v)‘QJ ; 
dimensionless vapor film thickness outside 
the stagnation region ; 
dimensionless vapor film temperature 
[equation (lo)]; 
absolute viscosity; 
kinematic viscosity ; 
dimensionle~ similarity coordinate for the 
liquid [equation (6)] ; 
density ; 
dimensionless liquid temperature [qua- 
tion (lo)]. _ 

liquid flow Reynolds number [2RV,/v,] ; ~U~scWts 
temperature in vapor film; 1, liquid properties. 
temperature in liquid ; T,,., wall tempera- 
ture; T,, free-stream temperature ; T,,, 1. INTRODUCTION 

boiling temperature of the liquid; THE FIRST theoretical study of upward-flow forced- 
vapor and liquid velocities in the x- convection film boiling from a horizontal cylinder was 
direction, respectively; that of Bromiey, LeRoy and Robbers [l]. They 
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examined the saturated liquid case and modified 
natural convection film boiling theory [2] to account 
for the effects of liquid velocity on the pressure 
distribution imposed on the vapor film. In developing 
their model, Bromley et al. assumed a constant 
evaporation rate per unit area of cylinder surface to 
evaluate the viscous drag at the vapor-liquid interface 
and that the interfacial velocity can be determined 
from potential flow theory. Because the results of their 
approximate solution did not correctly predict the 
functional behavior of their experimental data, they 
proposed an empirical relationship for predicting the 
rate of heat transfer. Motte [3] and Motte and 
Bromley [4] experimentally investigated forced- 
convection film boiling of subcooled liquids outside 
single cylinders over a wide range of temperatures and 
liquid velocities These workers concluded that, while 
heat is transported across the vapor film by con- 
duction, heat is transferred into the subcooled liquid 
by eddy motion (turbulence). They applied this idea to 
correlate their data; however, their correlation is 
dependent on their fIow system and lacks generality. 

Kobayasi [S] presented an analysis of film boiling 
on a sphere in a flowing saturated liquid in a manner 
identical to that of Bromley et al. [l] for a cylinder. In 
an attempt to simptify Kobayasi’s analysi% Witte [6] 
ignored the pressure field established in the vapor film 
by the flowing liquid and, therefore, assumed the 
velocity proHe within the vapor film is linear. Such an 
assumption can not be valid since, owing to the low 
density of the vapor compared to that of the liquid, 
pressure gradients must very significantly influence the 
velocity profile in the vapor film. Recently, Dhir and 
huohit [7] performed experiments on heat transfer 
during subcooled film boiling of water on spheres. 
They cited some values of the heat-transfer coefficient 
in the forced convection regime. 

Additions experimental work, in which high- 
temperature metal spheres were passed rapidly 
through water, has been reported by Walford[S] and 
Stevens and Witte [9]. These experiments were de- 
signed to study the transition from film to nucleate 
boiling Walford [8] measured an average heat flux 
which apparently includes contributions from both 
film and nucleate boiling, while in the experiments by 
Stevens and Witte [9] the liquid was significantly 
subcooled so that either stable film boiling did not 
occur or quickly gave way to nucleate boiling. Work 
with a hot sphere quenched in liquid sodium is 
described in [lo]. The liquid subcooling in these 
experiments was so extreme that it is doubtful that film 
boiling took place at all. 

An objective of this paper is to present a logical 
theoretical treatment of film boiling of flowing liquids 
on spheres or cylinders with due ~nside~tion of the 
effects of liquid s&cooling and viscosity. This analysis 
approaches the problem from the point of view that the 
vapor film thickness is a weak function of the arc 
length measured from the front stagnation point. The 
nature of the heat transfer from the sphere or cylinder 

may thus be determined from the solution of the 
governing equations for stagnation flow. If one has 
information regarding the location at which the vapor 
film is transformed into a thick vapor wake (separation 
point), then one can easily solve for the heat-transfer 
coefficient. This information may be obtained from 
experimental observation or inferred from consider- 
ation of the potential flow pressure gradient. 

Strictly speaking, the vapor film thickness is not 
constant over the surface of the sphere but grows over 
the leading portion of the body and may rapidly 
increase by over a factor of two near the equator of the 
sphere. Thus, we anticipate that a film boiling model 
based on a constant vapor film thickness will over- 
estimate the heat-transfer rate. However, as will be 
seen, the vapor film thickness variation over most of 
the front surface of the sphere is small enough so that 
the heat-transfer coeffkzient is not appreciably in error 
by assuming a uniform vapor film. One can readily 
develop a model that includes the effects of vapor film 
growth with distance from the stagnation point (see 
Section 4.2). Unfortunately, while conceptually simple, 
such models require numerical calculations and lack 
generality. The present treatment, based on the notion 
of a uniform vapor film, suggests a universal correlat- 
ing expression for for~~onv~tion film boiling heat 
transfer that incorporates the effects of both wall 
superheat and liquid subcooling. 

2. FILM ItOILING IN AXIALLY SYMMETRICAL 
STAGNATION FLOW 

2.1. Physical model 

Let us consider a stationary solid sphere of radius R 
situated in an upward-lowing, un~un&d liquid 
which has a uniform, constant velocity V, at infinity. 

“co ’ Tal 

FIG. 1. Physical model and c~r~inatesyst~ for film boiiing 
in the forward stagnation region. 
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We shall restrict ourselves to the forward stagnation 
region of the sphere as illustrated in Fig. 1. The 
temperature of the liquid at infinity is T, which is 
lower than the liquid saturation temperature T,,. The 
temperature of thesphere is sufficiently high so that the 
sphere is separated from the liquid by a continuous 
vapor film of uniform thickness 6. We introduce a 
curvilinear system of coordinates as shown in Fig. 1. 
We denote the arc length measured along any me- 
ridian in the B-direction from the front stagnation 
point (located at the bottom of the sphere) by x, and y 
is the coordinate normal to the surface of the sphere, 
outward as positive. 

The model of the vapor film used in the present 
analysis is essentially the one presented by Bromley et 
al. [ 11. Accordingly, in addition to the assumption of a 
vapor film of uniform thickness, the following assum- 
ptions are made: 

(Al) The inertia terms in the vapor film momentum 
equation and the convection terms in the vapor 
film energy equation can be neglected. 

(AL!) The vapor film is very thin compared with the 
radius of the sphere. 

(A3) The vapor flow is laminar around the sphere and 
the vapor-liquid interface is smooth. 

(A4) The surface temperature of the sphere, T, is 
taken to be uniform. 

(AS) All physical properties of the liquid and its vapor 
are assumed to be constant and may be eva- 
luated at the arithmetic average temperature (T, 
+ T&/2 for the vapor and (T,, + T,)/2 for the 
liquid. 

To extend the model of [l] to include liquid subcool- 
ing, it is necessary to consider energy convection 
within the liquid. To accomplish this, we make the 
following additional assumptions : 
(A6) The region in which the temperature ofthe liquid 

varies appreciably is a thin one adjacent to the 
vapor-liquid interface; in other words, the ther- 
mal boundary layer in the liquid is small com- 
pared to the radius of the sphere. 

(A7) The liquid velocity is high enough for the 
gravitational force (buoyancy) to be negligible. 

(A8) Radiation heat transfer is neglected. 
A discussion of the expected accuracy of these approxi- 
mations is postponed to Section 4.2. 

2.2. Basic conserwrion equations 

The underlying conservation equations incorporat- 
ing the foregoing assumptions are those for laminar, 

l The present analysis can be applied to predict film boiling 
beat transfer from a hot surface in the impingement region of 
a liquid jet by simply setting o, z V,/d where d is the jet 
diameter. In the Jominy end-quench test for the detexmi- 
nation of the hardenability of steel, a round steel bar is heated 
above 910°C and is then end-quenched with a water jet (see, 
for example, [li]). Early in the quenching period, the jet is in 
film boiling. 

axisymmetric stagnation flow. Across the vapor- 
liquid interface at y = 5, velocity, shear and mass 5ow 
continuity requirements provide the relations 

l(EU, pa”=p,~, PO 
ay ay = p,v. (1) 

In addition, temperature and energy continuity is also 
required at this interface 

t=T=T,,, k~=pvL+k,~. 
ay ay 

(2) 

Capital letters are used to identify the liquid velocity 
and temperature variables, while those in the vapor 
film are assigned lower case letters. Unsubscripted 
physical properties pertain to the vapor film, while 
those in the liquid region bear the subscript 1. The 
boundary conditions imposed at the hot surface of the 
sphere and in the liquid flow at infinity are 

y=O, u=v=O, t=T,.; (3) 

y + cc, LJ -+ a,x, V + Vd: = - 2a,y, T + T,;(4) 

Equations (4) and (5) simply express the fact that the 
liquid flow field and pressure distribution away from 
the thin viscous boundary layer is taken to be that for 
potential flow. The constant a, used above is the 
stagnation point velocity gradient. For flow in the 
front stagnation point region of a sphere a, = 
3V,/(2R).’ 

Now, as usual in boundary layer theory, the quan- 
tities in the above equations are non-dimensionalixed. 
In particular, for the liquid region momentum field, we 
define the variables 

t = (W~PY, 
WC) 

U = w--g-, 

V== - Gw)“~W~. 05) 

Similarly, for the vapor film there is introduced 

‘t = (WV)l’zy, 
Mlr) 

u = ax-, 
drl 

u = - (2&“?-(9A (7) 

where the pressure distribution in the vapor 5Im is 
given by 

Since the pressure distribution in the vapor film is 
precisely the same as that in potential flow - a 
consequence of the nature of boundary layers, the 
stagnation point velocity gradient ‘a’ for the vapor film 
is related to a, according to 

a = (~llPal 

[compare equation (5) with equation (8)]. 

(9) 
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Finaliy, the temperature profiles are conveniently 
described in terms of the following dimensionless 
choice : 

The liquid momentum and energy conservation 
equations now reduce to the well known forms 

F”‘+FF”+;(l -F”)=O, (If) 

v + Pr,F# = 0, (12) 

where the primes denote differentiation with respect to 
the independent variable <. For the vapor film there 
results 

f”’ +ff” + ;(I -f’2) = 0, (13) 

8”+Prfe’=O (14) 

with the primes representing differentiation with re- 
spect to 9. 

With this choice of notation, the matching con- 
ditions at the vapor-liquid interface transform to 

F(O) = +@-(%)t F’(0) = f’(s& 

F”(0) = #“%a). (1% 

b(O) = 0, 0,) = 1.0, 

~~(~~) =f(rta) + ~/(~r~)1’2~(0), (16) 

where E, /?, A and E are dimensionless parameters 
defined as 

Note that in equations (15) and (16) the value of r) at 
the vapor-liquid interface is denoted by ‘la = 
6(2u/v)r”. For convenience, we take 5 = 0 at the 
vapor-liquid interface. This is permissible because 4 
does not enter into the matching conditions. The 
parameter A in definition (17) is the familiar dimen- 
sionless wall superheat, while B is a parameter related 
to the degree of liquid subcooling. 

Applying the transformations (6), (7) and (10) to the 
boundary conditions (3) and (4) yields 

r) = 0 : f(0) = f’(0) = 0, e(0) = 0, (18) 

c -, xi : F(C) -e 1.0, &<) -, 1.0. (19) 

The ordinary diEerentia1 equations (1 l)-( 14), tog- 
ether with the matching and boundary conditions (1 S), 
(16), (18) and (19) suffice to determine the four 
unknowns. The problem is seen to involve consider- 

*This solution is obtained by using the transformation 
w(f) = @(t), which results in the seprabie equation S” + 
(2<_’ + e)S+ = 0. 

able mathematical complexity and a large number of 
independent physical parameters. However, a signi- 
ficant simplification in the problem can be obtained by 
the approach to be followed here. 

2.3. Solution method and results for velocity jield 

According to assumption (Al), we can set aside the 
effects of inertia and energy convection in the vapor 
film. With this, equations (13) and (14) simplify to 

f ,,I a -_ ;, w=o. (20) 

Solutions of these equations satisfying the boundary 
conditions (18) and the second of (16) are 

f - -itj?‘ffC$, es;, (21) 

where the integration constant C and the film thick- 
ness ?)a remain to be determined from’the interface 
matching condi$ons and the liquid velocity and 
temperature fields. 

Compare the flow of liquid in film boiling over a hot 
sphere with that of a sphere in thermal equilibrium 
with the surrounding liquid. For the latter case, the 
boundary layer is perceived as a thin layer at the sphere 
surface where viscous forces play a dominant role; 
outside this layer, the flow departs little from the 
inviscid flow pattern. For the hot spherecovered with a 
vapor film, the liquid does not come to rest anywhere 
within the flow field. At first sight it might appear that 
potential flow could be a valid solution for the entire 
liquid flow field [l, $61. This is not always the case, 
however, as we shall point out below. Moreover, the 
velocity derivatives for potential flow would not satisfy 
the tangential stress boundary condition at the 
vapor-liquid interface. Assuming the liquid flow is 
only slightly perturbed from potential, a first approxi- 
mation for the velocity in the liquid bounds layer is 

F(e) = r + W(S). (22) 

The perturbation function r%‘(r) is assumed to be small 
such that 1 W(&I << e. Su~tituting this expression into 
equation (11) and deleting terms of order W2 gives the 
following linearized momentum equation : 

J.y+@y’-&y_;O (23) 

subject to the matching conditions [see equation (15)] 

w(O) = @f(h), 1.0 + w’(o) =f’(~d)/E. 

w(ot = Bf”(tld) (241 

and the boundary condition [see equation (19)] 

W’(r)+O. (251 

The solution of equation (23) which satisfies condition 
(25) at infinity is* 

w’ = C,[e-@” - &< erfc ({/2’:‘)], (26) 

where C1 is an integration constant. Inasmuch as the 
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present analysis is developed under the assumption 
that the perturbed liquid velocity is small as compared 
to the velocity given by the inviscid solution, equation 
(26) will not be valid unless C, is a small quantity. 

Utilizing the second and third matching conditions 
(24) and equations (21) and (26) then gives the 
following algebraic relations between the constants of 
integration and the vapor film thickness, ‘I.+: 

1 
-4)1: + -r/,$+e 

c= 
$ 

I;; 3 (27) 

va+ n J fq7 

(28) 

The tangential component of the liquid velocity F’([) 
can readily be evaluated from equations (22) and (26) 

1 

J A 1 

r+ TY” 

x [e-rz’z - Jr.rfc(Q*)]. (29) 

Examination of this result reveals that F’(t) be- 
comes identical to the potential flow solution when tla 
= 2~“‘. For thicker vapor films, qa > 2&t”, due to the 
free stream pressure distribution impressed on the 
vapor film, the vapor velocity exhibits a maximum 
within the film and exceeds the liquid velocity within 
some of the film. Frictional shear is transported from 
the vapor flow to the liquid flow. In this case the liquid 
velocity is higher than that given by the potential 
solution. Conversely, when the vapor film is thin (i.e. qa 
< 2&l”), then the tangential velocity in the liquid falls 
below that given by potential flow theory, indicating 
that frictional shear is transmitted from liquid to 
vapor. The liquid velocity is now larger than that in the 
vapor film; the form of the vapor velocity distribution 
is monotonic, decreasing from some finite value at the 
vapor-liquid interface to zero at the hot surface. In 
actual practice, the vapor film thickness never becomes 
much smaller than 2~“‘. Thus, hereafter the term ‘thin 
film’ (or the thin-vapor-film limit) will refer to the 
rough equality qa * 2~“~. 

The range of film thicknesses for which only small 
departures from the inviscid solution are to be expec- 
ted can be calculated from the present results, with the 
help of some representative values of the parameters /I 
and E. The parameter /? [see equation (17)] is generally 
a number of order unity. For instance, for water, 

l Equation (32) is applicable to liquid metals by setting 
C,(q,) = 0 in the third term in equation (32). 

ethanol, and sodium at one atmosphere, the values of j 
areO.gl.5, and 2.6 respectively. On the other hand, the 
values of E at one atmosphere are quite small and are in 
the range 0.01 < E c 0.05. If we require the perturbed 
velocity component to fall within, say, 20% of the 
potential flow value, equation (29) suggests that the 
vapor film thickness should be confined to the range 
0.12 2 na 2 0.8. Using the results of the next section, 
we find that in a highly subcooled liquid the vapor film 
thickness falls within this range. However, as subcool- 
ing is decreased and saturated conditions are ap 
proached, qa is predicted to exceed 0.8 by more than a 
factor of 3.0 resulting in appreciable departures from 
inviscid motion in the liquid. Fortunately, for liquid 
temperatures near saturation, we can negIect the 
existence of the viscous liquid boundary layer without 
causing any significant error in the heat-transfer 
problem. This will be demonstrated below. 

2.4. Vapor ,jlm thickness 

For high Prandtl number liquids, the thermal 
boundary layer will be restricted to a very thin region 
near the vapor-liquid interface, and we may, therefore, 
employ an expression for F(e) which is applicable for 
small C. Expanding F(C) in a Taylor series, it is found 
that 

. 
F(C) = F(O) + <F’(O) + ;c’F”(o) + . . . = .$_f(rtd) 

1 IL ii2 
+ eCI + Cl(rlb)l - Yj 2 

0 
C2C,(rl,) + . *. , (30) 

where use has been made of the first of matching 
conditions (15). Since both C, and c are small com- 
pared with unity, it is clear that we need only retain the 
first two terms in this series. Substituting this into 
equation (12) and integrating yields 

4,(o) = Cwwr,(l G)11’2 
erfc (61’2) ’ 

where = + C,). values of 
with which have to are much than unity. 

example, for in film at one 
phere b 0.01. Physically, merely implies the 
evaporation has little on the flow 
field F(0) can taken to zero. 

Substituting (31). where = 0 equa- 
tion into the of the conditions (16) 

the following relationship for vapor 
film : 

61: -- 1 0 xi’2 T 

+ 1 + = A, 

where the relation is by equation We 
are in a to derive interpolation 
formula the vapor thickness which valid for 

liquid. Values A in range 0.1 A < and 
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of B for 0 < B < 3.0 have been obtained in the 
laboratory [1,3,4,7]. Predicted values of tf6 over this 
range are found to be remarkably insensitive to E and 8. 
As an exampie, we may note that ifs = 0.03 and A = B 
= 1.0 an increase in the magnitude of B from 0.1 to 10.0 
results in a variation of less than loo/, in the value of tl& 
This is to be compared with an increase in the 
interfacial velocity from F’(0) = 1.0 for/J = 0.1 to F’(0) 
= 2.0 when j5 = 10.0 [see equation (29)]. Thus it 
appears that the film thickness perturbation is small 
even when the liquid velocity perturbation is not small 
which allows us to extend equation (32) into a 
parameter domain well beyond that for liquid motion. 
This behavior is readily explained by examination of 
equations (28) and (32). In the case of highly subcooled 
liquids, when B >> A both ‘la and C,(s,) are small 
quantities. The third term in equation (32) dominates 
the first two terms and the film thickness takes the 
limiting form 

/,\1/2 A 
I‘ ‘7 

‘la+ - 0 2 z 
for B >> A, (33) 

which is independent of E and /?. In this limiting case, 
the liquid subcooling is so large that practically all of 
the energy transferred from the sphere heats the 
flowing liquid. The contribution of liquid evaporation 
to the energy balance at ‘f = qa is negligible, and the 
vapor film thickness is dictated by the heat conducted 
through it. The reason for the validity of expression 
(33) for common liquids with large amounts of sub- 
cooling, is that the vapor film becomes sufficiently thin 
so that the liquid shear is small (i.e. ‘la + 2~“‘) and the 
liquid heat transfer can be determined from potential 
flow theory. For nearly saturated liquids, A >> B, % is 
oforder unity and C,(r)& approaches the quantity C, = 
flrfd(8r~)“~ [see equation (28)]. Substituting this value 
into equation (32) and neglecting the third term which 
is now small compared with the others, yields 

qd + (24A)t” for A >> B, (34) 

an equation which is also independent of E and fl. This 
shows that under saturated boiling conditions the 
vapor flow is mainly governed by the potential flow 
pressure distribution outside the viscous layer, the 
effect of liquid motion being imperceptible. Tbe vapor 
velocity within most of the film is so much larger than 
the liquid velocity that, as far as the vapor motion is 
concerned, the phase change boundary at r) = tla acts 
as a solid wall. Recall that for thick vapor films the 
vapor velocity rises to a maximum within the film (at 1 
w ttd2 when ‘la z+ 2~~~~). 

By considering the structure of equations (33f and 
(34). it is not difficult to see that the following relation 
transforms into (33) and (34) when A >> B and A << B: 

Qd+!&+(;QJ-1’4. (35) 

Since ?)a increases hneariy with A at high subcoohngs 
and as the one-fourth power of A at low subcoolings, 

the accuracy of this interpolation formula is relatively 
high An implicit, but more accurate relationship 
between the vapor film thickness and the parameters 
A, B is obtainable from equation (32) by simul- 
taneously setting C, = fit)&3n)“2 in the second term 
and C, = 0 in the third term, namely 

it?,, = A. (36) 

This relation could be obtained directly by assuming 
that the flow of vapor moves under the influence of the 
potential flow pressure field only and is contained 
between two stationary parallel planes (i.e. the 
liquid-vapor interface and the surface of the sphere), 
with the liquid heat transfer based on inviscid flow. In 
the region where both hquid subcooling and wall 
superheat are important, the vapor film thickness 
given by equation (35) is only about 15% different than 
that from the more accurate result (36). 

Of course, equation (35) is only expected to be vaiid 
for physical parameters A and B leading to a stable 
vapor layer covering the hot surface. As an example, 
Dhir and Purohit [7] observed that the minimum 
surface temperature to sustain film boiling of water on 
a hot sphere does not depend on liquid velocity and 
can be correlated in K by T, - T,,, = 101 + S(T,, - 
T,). In terms of our dimensionless parameters, this 
result leads us to expect stable film boiiing for water 
when A 5 0.08 + 0.3B. 

2.5. Heat transfer 

Calculations based on the theoretical pressure dis- 
tribution derived from potential flow theory indicate 
an adverse pressure gradient on the downstream side 
of bodies such as spheres and cylinders (i.e. for 8 > 
n/Z). Thus, the vapor film cannot penetrate too far past 
the equatorial plane of the sphere without becoming 
very thick. At sufficiently high liquid flow velocities, 
visual observation indicates that this ‘vapor film 
~~ration’~u~ between positions 8 = z/2 and 3rr/2 
radians from the forward stagnation point, depending 
on the degree of liquid s&cooling [12]. The down- 
stream side of the sphere is observed to be covered 
by a thick vapor wake. A similar observation is 
reported in [l] for film boiling from a horizontal 
cylinder with the liquid flow directed upward. Tem- 
perature measurements within the interior of the 
cylinder demonstrated that the largest percentage of 
heat is transferred on the lower half of the cylinder. 

If the heat transfer above the angle 0 = n/2 is 
neglected, the heat-transfer coefficient, It, based on the 
total surface area of the sphere becomes 

k 3 112 

hs--= - 

0 

f&“’ 

26 2 
(37) 

where Re = ZRV,/v, is the liquid flow Reynolds 
number. Equation (37) is based on a uniform vapor 
film thickness over the lower surface of the sphere 
equal in value to that in the forward stagnation region. 
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The justification ofdoing this is presented below and in 
Section 4.2. The Nusselt number, Nu = ZRh/k, may be 
expressed as 

As mentioned previously, solutions for film boiling 
of saturated liquids on spheres were provided by 
Kobayasi [5] and Witte [6]. Kobayasi’s expression for 
high liquid velocity, when cast in the notation of 
Section (2.2), is given by 

BNu 0.454 
o”Z=A’/4* (39) 

The present method (of equation (38) when B = 0) 
yields the equation 

BNu 0.553 
o”Z=A’“* (40) 

This relation has qualitative behavior which is identi- 
cal to equation (39). The small difference in the 
numerical constants of 22% is due undoubtedly to our 
assumption of a uniform vapor film thickness. Witte’s 
result, which ignores the impressed pressure distri- 
bution, takes the form 

BNu 0.702~” 
o’/Z= Al/Z (41) 

and yields values for Nu lower than equations (39) or 
(40) by about a factor of 4.0 for A = 1.0. This result 
would not be expected to apply to most film boiling 
situations of practical interest. 

3. FILM BOILING IN TWO-DIMENSIONAL 
STAGNATION FL.OW 

The analysis of film boiling in the stagnation region 
of a cylinder is similar to that for a sphere, the only 
basic difference being plane flow as opposed to 
axisymmetrical flow. Omitting the derivation, the 
approximate equation for the Nusselt number for 
forced convection film boiling from a cylinder in- 
corporating the assumptions of Section 2.1 is 

-$ = @,[I, + ($>‘(;>‘I’“. (42) 

The ratio of the Nusselt number for a sphere to that for 
a cylinder is between 1.03 and 1.22 depending on the 
amount of liquid subcooling. Considering the random 
scatter of the experimental data and the simplifying 
assumptions in the analysis, this small difference 
between the two geometries can be ignored. 

4. DSCUSION 

4.1. Comparison with experiment 

In Fig. 2, the present results are compared with 
available experimental data for forced-convection film 
boiling from cylinders and spheres [l, 2,3,4,7]. Motte 
[3] and Motte and Bromley [4] studied film boiling 
with ethyl alcohol, hexane, carbon tetrachloride, and 
benzene from cylinders of 0.983, 1.26, and 1.62cm 
diameter. The data represent subcoolings from 
11.0-45”C and liquid flow velocities in the range 0.9 to 
4.0 m s - ’ . Data for film boiling of ethyl alcohol [l] at 
saturation temperature in the forced convection re- 
gime are also included in Fig. 2. Dhir and Purohit’s [7] 
data were obtained for film boiling from a 1.9 cm 
diameter sphere in the boiling region very close to the 
minimum heat flux. The amount of water subcooling 
was varied from 0-50°C and the water flow velocity 
was increased from 0.02-0.45 m s- *. To avoid the 
effects of gravity, Fig. 2 includes only the highest flow 
velocity reported in [7]. 

It is clear from Fig. 2 that the observed heat transfer 
rates are higher than the calculated values in every 
case. This is not unexpected since the model does not 
account for wave motion at the liquid-vapor interface, 
liquid-solid contact nor heat transfer above 6 = n/2. 
Nevertheless, the,order of magnitude and the general 
trend of the data agree well with the theory. Com- 
parison of the solution (38) with the experimental 
results presented in Fig. 2, shows that a numerical 
correction factor of about 2.0 should be introduced to 
best correlate the data (dashed curve in Fig. 2). It 
should be mentioned that a numerical correction 
factor of this magnitude has been introduced to 

0 ETHYL ALCOHOL 

1/(24A) + t2/al*tWA)' 

FIG. 2. Forced-convection film boiling from a horizontal cylinder and a sphere [l-4,7] : -, based on 
theory ; - - -, suggested correlation. 
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account for the intensifying effect of waves on heat 
transfer in film condensation of flowing vapor on a 
cold surface [13]. Note that the inverse of the vapor 
film thickness to the fourth power is used as the 
abscissa in Fig. 2 [see equation (391. Most of the 
measurements have been made in the thick vapor film 
boiling regime corresponding to low values of the 
abscissa. In this region, the vapor superheat parameter 
A dominates and liquid subcooling effects are neglig- 
ible. The scatter in the data seems to suggest that the 
correlation improves with increased liquid subcooling, 
although this may very well be due to the paucity of 
data at high liquid subcooling. It would be desirable to 
obtain additional data in this region. 

4.2. Validity of the model 

First we focus attention on the applicability of 
equation (38) to film boiling on a sphere or cylinder., 
This information is provided by a more general 
analysis which allows for a variable vapor film thick- 
ness. An expression for the vapor film thickness as a 
function of the angle 8 measured relative to the 
upstream axis of symmetry (see Fig. 1) can be obtained 
from a mass balance for a small differential element of 
vapor. Invoking the assumptions of Section 2.1, we 
hnd that q,(0) satisfies the ordinary differential equa- 
tion 

is given by equation (36) which is recovered by setting 
dqa(@/d8 = ~9 = 0 in equation (43). Equation (43) was 
solved numerically using a computer library program. 
Typical results for saturated and subcooled film 
boiling, showing the effects of wall superheat on the 
growth of the vapor film in the e-direction, are 
displayed in Fig. 3. Note that the film thickness is 
normalized with respect to the minimum film thickness 
at the front stagnation point, q& It can be seen that the 
normalized vapor film thickness is quite insensitive to 
A and B for sphere surface positions less than 1.0 rad. 
Note also that rt6(0) 2 qr over most of the lower surface 
of the sphere. When the liquid subcooling effect is 
important (when B > A), the numerical integration 
could be carried out almost all the way to 0 = J2 
without a significant increase in the vapor film thick- 
ness (vapor film separation). This is illustrated in Fig. 3 
for the cases A = 0.2, A = 1.0 when B = 2.0. Neglect of 
the variation of vapor film thickness with surface 
position results in overestimating the heat transfer by 
some 35% in the case of saturated liquids, but this error 
becomes less than 20% in the limit of large liquid 
subcooling. 

The large predicted increase in the film thickness 
near the equator of the sphere is due to the lessening 
and reversal of the pressure gradient as 0 approaches 

1 

ha(e) A-Z cos2e 
-isin2e)~:(8)-(~)I'z.B.~~+c0s8)(2+c0s8)-1:2.~d(B) 

2 
-= 

de 
$ (sin 0 cos eg(e) 

(43) I 
1 

where, in accordance with what has been said earlier and exceeds x/2. This is in qualitative agreement with 
for stagnation flow, the vapor-liquid interface is available photographic sequences for film boiling of 
assumed to be stationary as far as the vapor flow is saturated liquids from spheres falling through water 
concerned, and the vapor flow and heat transfer in the [12], which indicate that the vapor film thickness in 
liquid are assumed controlled by the potential flow the region 0 z n/2 may be several times the vapor film 
pressure distribution and velocity field, respectively. thickness covering the front of the sphere. Near the 
The initial condition for equation (43) comes from the equator of the sphere, within the angular ring [(x/2) - 
observation that the vapor film curvature vanishes at 01, the drag of the liquid on the vapor film over- 
the stagnation point tI = 0. Thus, the initial value q,(0) shadows the pressure gradient ‘force’ and the film 
= qa at 0 = 0 required for the solution of the problem motion is not unlike forced-convection film boiling of 

0 0.2 0.4 
A 

0.6 0.6 1.0 1.2 1.4 1.6 
8, radians 

FIG. 3. Variation of local film thickness over the lower surface of a sphere according to equation (43). 



a saturated liquid on a flat plate [14]. The liquid drag Substitution of the typical values R z 1.0~~ Pr, -u 
is not included in equation (43) which is based on a 5.0, and Re z 2 x 104, yields 0.003 cm for the 
stationary vapor-liquid interface. It may be shown, thickness of the thermal layer, a value which is quite 
however, that the angle [(n/2) - f?] in which liquid small compared to the radius of the sphere [assump 
drag dominates is of the order 4~;’ and for nearly tion (A6)]. The condition for the neglect of gravity 
saturated liquids is insignificant. As mentioned earlier, effects is V, > (2gR)‘” (for example see [I]), or Re L=- 
vapor film behavior under large liquid subcooling is (8gR3/vf)’ ‘. Putting R Y l.Ocm and v, 2: 0.01 cm2 
controlled by the heat conducted through the vapor s-l gives Re = 9 x lo3 for the lower bound to the 

fdm to the vapor-liquid interface. In this limit the liquid Reynolds number consistent with negligible 
vapor film thickness is obtained by setting the con- buoyancy force.. All the experimental results presented 
duction heat flux within the film equal to the solution in Fig. 2 satisfy this criterion. Finally, we come to the 
for heat (or mass) transfer from a sphere in potential assumption of negligible thermal radiation heat trans- 
flow, as presented by Levich [ 15) or Sideman [ 161 and fer [see (A8)]. The maximum Nusselt number for 
used in expression (43). It has been pointed out in [lo] radiative transport is Nu = 2RaTz./k, where (r is the 

that for highly subcooled liquids almost ail the heat Stefan-Boitzman constant. The contribution of ra- 

arriving at the vapor-liquid interface is convected diative heat transfer to the total Nusselt number is 
away in the liquid. found to be iess than 10 percent for the conditions 

Some care must be exercised in neglecting the effects reported in [l-4,7]. 

of vapor film inertia and convection [see Section 2.1, 
(Al)] as these effects become significant for thick vapor 5. CONCLUSIONS 

films. Inertia and convection effects are estimated by In the present paper, the viscous motion generated 
numerically integrating equations (13) and (14) for the within a subcooled liquid undergoing forced- 
special case of saturated film boiling, B = 0. Once convection film boiling in the stagnation region of a 
again, in this limit the force governing the vapor 
motion is mainly due to the potential flow pressure 

sphere (or a cylinder) has been studied. This boiling 

distribution so thatf’(qJ may be taken as zero and the 
process may be characterized as follows: 

liquid flow field may be ignored. The remaining 
1. For large amounts of subcooling in the liquid, the 

viscous shear in the liquid becomes vanishingly 
appropriate boundary conditions aref(0) = f’(0) = 
e(O) = 0 and @(q,) = 1.0, M&f = f(ftlJ. We find that 
the effects of vapor film inertia and convection on heat- 
transfer rate is characterized by the correction factor (1 
-+ 0.9~)’ ‘4 for the Nusseit number, if the value of Pr cx 
l.O*. This correction factor is a ‘fit’ to the numerical 

small. In this thin vapor film limit, heat transfer to 
the liquid can be evaluated by assuming the 
existence of a thermal boundary layer superposed 
on potential flow. The vapor film thickness is 
strictly controlled by the energy conducted through 
it to the flowing liquid. 

results. Since the presence of liquid subcooling only 2. For film boiling in nearly saturated liquids, viscous 
reduces the vapor film thickness, this correction will shear effects influence the liquid motion, but exert 
overestimate the error when B is different from zero. little influence on the heat transfer. Because of the 
Interestingly enough, for sufficiently large values of A, low density of the vapor compared to that of the 
say A = 3.0, neglecting vapor film inertia and con- liquid, it is the potential flow pressure distribution 
vection underestimates Nu by up to 38%, which almost that drives the vapor motion and not the interfacial 
exactly compensates for the error introduced by shear forces. In addition, almost all the energy 
assuming a uniform vapor film thickness. transferred from the sphere surface is used to 

From equation (37) we expect the vapor film to be 
very thin compared with the radius of the sphere if 

produce vapor and very fittle energy is transmitt~ 
to the viscous liquid. 

3. The heat transfer relation (38) derived for the 
(44) stagnation region is approximately applicable over 

most of the surface of the sphere not covered by the 
This condition is always satisfied in forced-convection thick vapor wake. It is found that expression (38), 
film boiling. The left-hand side of inequality (44) fails in when modified by a numerical correction factor of 
the range 1O-3-1O-2. For iaminar vapor flow assump about 2.0, namely 
tion (A3f impiies that the vapor film Reynolds number 
Us/v ‘5 ~~Re’~‘/(48~) be less than -400. The vapor 
film Reynolds number is usually of the order of 
1.0-150. Except for film boiling of highly subcooled 
liquids, fiim Reynolds numbers > 30 are predicted so 

provides a reasonable correlation of observed heat- 
transfer rates for subcooled forced-convection fiim 

that wave motion may be superposed on the forward 
motion of the vapor film. The effective thickness of the 

boiling from spheres or cylinders. 

therxpal boundary layer in the liquid is R(RePr,)-’ “. Acknowledgements - We wish to thank Dr. D. H. Cho for his 
heluful discussions of asoects of this work. The efforts of 

* This correction factor is little different than that suggF_- Kaihy Cummings and Marilyn Goldman in the preparation 
ted by Bromley, Leroy and Robbers [l] ; viz, (I + 0.4AP”. of the manuscriot are aooreciated. r . . 
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EBULLITION EN FILM DUN LIQUIDE SOUS-REFROIDI 
ET EN CONVECTION FORCEE, AU POINT D’ARRET AMONT DUNE 

SPHERE OU DUN CYLINDRE 

Risumi - On analyse l’ebullition en film au point d’arr& dans les liquides sous-refroidis. Le role de la 
viscosim du liquide dans l’~bul~don en film est determine en admettant l’existence dune couche limite 
hydrodynamique superposcX ;i l’ecoulement potentiel et en utilisant une technique de perturbation. La 
couche visqueuse due ai la contrainte tangentielle a l’interface vapeur-liquide perturbe lc champ des vitesses 
Ilgerement, seulement aux forts sous-refroidissements du liquide. Alors que la solution li viscositi nulle ne 
peut atre utili& pour d&ire Ic mouvement du liquide quand la temperature du liquide est proche de sa 
temp6rature de saturation, la vapeur se meut seulement sous I’influence du champ de pression de 
l’ecoulement potentiel, iliminant Ie couplage entre la couche limite du liquide et le film de vapeur sans erreur 
appreciable dans Ie problime du transfert thermique. Une formule d’interpolation rationnelle entre ces deux 
cas limite conduit P une expression simple pour le transfert thermique a~orn~~ant tabulation, en tenant 
compte des effets principaux de la surchauffe de la paroi et du sous-refroidissement du liquide. On demontre 

I’applicabiliti de cette formule P l’ebullition en film ii partir dune sphere ou dun cylindre. 

UNTERKUHLTES FILMSIEDEN BEI ERZWUNGENER KONVEKTION IM 
VORDEREN STAUGEBIET EINER KUGEL ODER EINES ZYLINDERS 

Zusammenfamung - Film&eden bei erxwungener Konvektion in der Sta~~~mung unterk~hlt~ Fliissigkei- 
ten wird untersucht. Mittels eines Stijrungsansatxes wird unter Voraussetxung der Existenx einer der 
Potentialstromung iiberlagerten hydrodynamischen Grenxschicht der Eintlul3 der Fliissigkeitsviskositiit auf 
das Film&den bestimmt. Es wird gexeigt, daQ die durch die Schubspanntmg an der Dampf-Fliissigkeits- 
GrenxtIiiche bedingte Reibungs-Grenxschicht bei groller Fliissigkeits-Unterkiihlung das Geschwindigkeits- 
feld nur geringfilgig stiirt. Wiihrend xur Beschreibung der Flllssigkeitsbewegung die reibungsfreie Losung 
nicht verwendet werden kann, wenn die Fliissigkeit anniihrmd Siittigungstemperatur hat, ist die 
Doing mu von der Poten~Istr~mun~D~kve~~lung abhjingig. Dadurch ergibt sich ohne 
wesentlichs Fehler bexiiglich der W~e~~tra8ung eine Entkopplung xwischen der Flilssigkeitsgrenx- 
schicht und dem Dampffilm. Eine xweckmii&ge Interpolationsformel xwischen diesen beiden Grenxfiillen 
filhrt auf einen einfachen Ausdruck fur den Wartnciibergang beim Filmsieden in Abhiingigkeit von den 
HaupteinfluDgrGBen der Wandiiberhitxung und der Fliissigkeitsunterkilung. Die Anwendbarkeit dieser 

Bexiehung auf unterkiihltes Filmsieden an einer Kugel oder einem Zylinder wird gexeigt. 
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l-IJIEHOlIHOE KWIIEHME C HEAOI-PEBOM B l-lEPEAHEI? KPIfTWIECKOR 30HE 
,QJIJI IIIAPA MJIM UMJIMH&PA lIPI BbIH43KAEHHOR KOHBEKLIMM 

A~wo~aunn - npoeeneH aHanH3 ITn&iOlrHOrO KWeHHa HenorpeToii xcwxmc~~ B KpHTHWCKOfi 3oHe npH 
BblHyZ.X.JleHHOfi KOHBeKUHH. BnmHHe BR3KOCTH XKQKOCTH Ha IlJli?HOYHOe KWeHHe On~~eJlSieTCn C 

noMom npennonorteHm 0 H~H~HH rwxpoix~HawiwcKor0 norpaHHsHor0 cnos, HanoxreHHoro Ha 

IlOTeHltHaJlbHOe Te'ieHHe, H HCllOnb30BaHHK MtTO!Ja BO3MyIUeHHi-L nOKa3aHO. '(TO B CHJIy HanH'iHfl 

cnBHroBor0 HanpnrteHHn Ha noeepxHocTH pa3nena napwi.uKocTb norpaHH4Hblti cnoii TonbKo He3Ha- 

wTenbH0 ~03~yuiaeT none c~0pocTH np5i 6onbmHx 3HaqeHmx Henorpeea XMKOCTH. XoTn arm 
0nHcaHw TeqeHm XC~KOCTH B cnyqae, Korna eE Tehmeparypa npH6nHxaeTcn K TebmepaType tiacu- 
meHHn, Henb3n HCnOJtb30BaTb peuleHHe nnn HeBnJKOrO cnflan. HafineHo, 'ITO nap LIBHXeTCn TOnbKO 

non nnwiwieh4 pacnpeneneHm fiaBneH_ B noTeHmanbrior4 noToKe, ST0 n03BonneT, 6e3 BwzceHHn 

cywcTseHiiblx norperuHocTeii B wqy 0 TennonepeHoce, pacch4alpmaTb oTnenbH0 norpamwibd 

cnoR*~~~~~~na~By~nn~HKy.Mcnonb3osa~~epau~o~anbHoR~HTepnonnu~o~Hol~op~yn~ann 

0nHcaHm ~THX A~yx npenenbHba cnyraes n03BonfleT nonywTb npocroe BwparteHHe nnn Tenno- 

nepeHC?Ca IlpH IlJl~HO~HOM KHIleHHH, KOTOpOe )WiTbIBaeT TaKHe OCHOBHbIe 3@eKThI, KaK Ilepel-peB 

CTeHKH H Henorpee Y(KI(KOCTH. lloKa3aHa ,,pHMeHHMOCTb @optdynbl K cnyqalo nnisoqeoro KWeHHIl 

c HenorpeBoM Ha ruape HJlH WiJIHHJl~. 


